
Courier
Product
Guide
PRODUCT GUIDE

© 2024 Progress. All Rights Reserved. 2

IT operators, Infosec and DevOps engineers often struggle with unplanned and reactive

work. Most of this is due to a lack of on-demand orchestration, leading to ad hoc requests

being serviced one-off. This can lead to patching, app deployment, incident response and

an overall reduction in productivity and confidence.

Progress® Chef® Courier™ is a job orchestration platform that lets you address everyday

impromptu distractions. It is a set of Chef services that allow users to orchestrate timing and

targeting dimensions for the action/execution capabilities that all other Chef products provide.

Courier is a job orchestration and automation tool for executing and verifying your actions.

Courier gives you complete control and flexibility over how customers can perform actions

on the fleet, enabling IT operators, InfoSec engineers and other administrators to run on-

demand jobs. Adding the ad hoc job orchestration feature to the existing infrastructure

management offering eliminates the need to build custom solutions for emergency tasks

and reactionary work.

Three different aspects help customers control their fleet.

Whenever

When you want to perform

an action – now, on-demand,

scheduled, recurring or recurring

at a specific interval with

exception.

Whatever

When you want to perform

actions, such as an OS command,

a cookbook run, an InSpec scan

or a combination. The output of

one command can be passed to

another command, or it can be

conditional, where a command

runs if the previous run succeeds.

Wherever

When you want to target a

specific node or a subset of

nodes, e.g., start with staging,

production or a particular region,

such as the US east coast.

© 2024 Progress. All Rights Reserved. 3

Terminologies

Fundamentals of Job
• Courier job: The single place in which What, Where and When are provided for actions

to be performed. This is an umbrella term that is to be used at the highest level for Courier.

Users can define multiple jobs. A job can be executed numerous times across various

nodes for multiple actions.

• Job definition template: This is the fundamental specification of a courier job, a JSON

text containing the details of a single courier job.

• Job instance: A single occurrence of a job. There can be multiple instances for every

job. An instance can be executed for various actions on multiple nodes.

• Job run: The assigned job instance for a node. Every node provided in the job definition

will have a job run for every job instance, which is across multiple nodes.

• Action: Every node is to execute the workloads with corresponding payloads during a job run.

• Step: Individual commands to be executed for an action of a job run. OS command

action can have multiple steps, such as making and reading files.

Dispatcher Runner Skill Node Interpreter

Server-side

configuration UI,

repository and

service that provides

JSON definitions to

request Runners on

demand.

Client/ agent

microservice

that requests job

definitions from

Dispatcher and uses

those definitions

to execute actions

initiated from the

memory state and

CPU threading it is

operating under (or

“installed on” in the

physical server world).

Skill is the ability to

perform actions for

a particular outcome

that may or may

not be installed and

managed by Chef

(example: Chef Infra,

Courier runner).

An individual

component of your

system, physical or

virtual (e.g., server,

workstation, IP router,

virtual machine or

another node or

component) that is

assessed, installed,

configured, updated,

scanned and/or

managed by any skill.

The runner invokes

individual services to

execute each type of

step in the actions.

Every skill will have

a corresponding

interpreter to work

with the Courier.

© 2024 Progress. All Rights Reserved. 4

How you can use Courier
As APIs
Customers can access all actions of Courier through its APIs (through credentials and

authentication) and integrate Courier into their pipelines and automation systems.

Powerful CLI
This is for customers who need or prefer to work on their terminal. It includes all the

actions available through the API.

An intuitive UI experience
New upcoming features where a simple visual interface is provided to create Courier

templates and access reports.

Job Definition Template

The Where

Definition: The section of the courier job definition through which the user tells where the

job should be executed on the fleet.

This is defined using the courier job’s target section. Multiple ways exist to target a courier

job, a common one being a node distribution group.

© 2024 Progress. All Rights Reserved. 5

Distribution Group
Each job can contain multiple node distribution groups or a composite of all node

distribution groups.

• List of node IDs: The user provides a clear list of specific nodes for the job.

• Node filter: Reference for a node filter created in node management. Courier will resolve

the nodes for the job for every instance from node management.

• Node list: Reference to a node list created in node management. Courier will resolve the

nodes for the job for every instance from node management.

• Node search query: A text-based query string provided by the user for searching

against node management. Courier will resolve the nodes for the job for every instance.

Execution Types
Sequential: Runs are performed on node distribution groups one after the other.

Parallel: Runs are performed on node distribution groups in parallel. Batching rules within

each node distribution group will still be applicable.

Batching
Controls the number of nodes executing a job run within a node distribution group. Only

the number of nodes specified in a batch size can execute runs together, and the rest in

the node distribution group must wait for their batch.

Two methods can define the batch size:

 • Fixed number: An integer value specifying the number of nodes accommodated into a batch.

Example: 5 nodes per node distribution group.

• Percentage: A relative value based on the number of nodes within a node distribution group.

Example: 10% of nodes per node distribution group.

© 2024 Progress. All Rights Reserved. 6

Batching includes two types:

• Fixed batch: All nodes within a node distribution group are divided into batches as

specified in the job definition. The batches will be executed sequentially.

Example: Batch size of 5 for node distribution group [a,b,c,d,e,f,g,h,i,j,k]. Job runs will be

performed first on a,b,c,d,e together. After these 5 are complete, then f,g,h,i,j will execute

together. Job run will happen on node k only after the completion of the second batch.

• Rolling batches: At any point, only the batch size of the nodes specified can be

executed within a node distribution group. Nodes from within a node distribution group

will be added to a batch when a node inside the batch completes the execution.

Example: A batch size of 5 for the node distribution group [a,b,c,d,e,f,g,h,i,j,k]. Job runs will

be performed first on a,b,c,d and e together.

The When

Definition: The section of the courier job definition through which the user tells when the

job should be executed on the fleet. Only one schedule can be used per job.

All schedules are maintained in UTC only.

Types of schedules for Courier jobs are:

• Immediate run: The job must be run immediately by the nodes. Nodes will execute

these runs immediately after their current run is completed.

• Scheduled run: The job must be run at the specified time and date. Nodes will execute

the run on the specified time and date after their current run completes.

Example: Run this job on January 1, 2024 at 1 am.

• Chronic runs: The job must be run multiple times on the specified date(s) and time(s).

Each occurrence of this schedule will be an instance of the job.

Examples: Every Monday from January 1 to May 1, 2024, and every day of April 2024 at 3 pm.

Schedule exceptions
These are no-go date(s) during which no job run should be picked up.

Ongoing runs can continue, however such instances will be marked as not performed.

© 2024 Progress. All Rights Reserved. 7

Schedule exception types
There are two types of schedule exceptions:

Global: These are a list of exceptions to schedules maintained globally across all jobs. The

job definition can opt-in to incorporate these into its schedule.

Example: Amazon can mark black Friday sale days as global exceptions so that no jobs run

on the nodes and overload them.

Per job: These are exceptions to the scheduled maintenance per job. They can be added

in addition to global schedule exceptions if that has been opted in.

Example: A courier job to apply OS patches every six months can have exceptions to

not perform on banking holidays when there will not be anyone available to debug if

something goes wrong.

Cancelled instances: All instances of a job the user has explicitly prevented from running

will not be sent to the runners. Records related to completed instances will continue to be

stored for retrieval.

Example: The legal department has updated the policies around maintaining version

upgrades. Hence, the courier’s job of performing automated upgrades must be stopped to

accommodate the new system of upgrades.

Classification based on execution and status:

Past instances: Live instances: Completed jobs:

This is a term for referring to

complete instances. This includes

successful and failed cases.

Every job instance that has run (on

any node) and is currently underway

now of checking is called a live

instance.

Any jobs with no instances left to

run are labelled as completed jobs.

This can include jobs that have been

successful, failed and cancelled.

© 2024 Progress. All Rights Reserved. 8

The What

Definition: The aspect of the job definition through which the actions and steps are

specified, along with how they must be executed. A package can have multiple actions and

steps. Each package is to be executed entirely for every run.

•	 Action: A compilation of everything that happens on a node before, during and after

a job run. There can be multiple actions per run. Actions will always be performed

sequentially as defined in the job.

Example: I want to perform log4j scan using specific inspec skill version on nodes only when

they have the required amount of memory

•	 Step: Every individual command execution to be performed on the node. There can

be multiple steps with multiple commands for an action. Steps require interpreters to

perform the execution irrespective of whether they are Chef commands or not

•	 Skill name: The name of the executable to be used for performing the step. If the skill

or its corresponding interpreter is not available on the node at the time of execution

the action will be considered as failed

© 2024 Progress. All Rights Reserved. 9

•	 Action: A compilation of everything that happens on a node before, during and after

a job run. There can be multiple actions per run. Actions will always be performed

sequentially as defined in the job.

Example: I want to perform log4j scan using specific inspec skill version on nodes only

when they have the required amount of memory

•	 Step: Every individual command execution to be performed on the node. There can

be multiple steps with multiple commands for an action. Steps require interpreters to

perform the execution irrespective of whether they are Chef commands or not

•	 Skill name: The name of the executable to be used for performing the step. If the skill

or its corresponding interpreter is not available on the node at the time of execution

the action will be considered as failed

•	 Version: Any specific version(s) to be used when invoking the step’s skill. Version is

optional and if no value is provided then the runner will execute against whatever is the

default version of the skill available on the node. Version can be specified in different forms:

•	 Exact version. This is a single value, and the step will be performed on this

version of the skill alone.

Example: Inspec version 5 will execute the step on version 5 only.

•	 Range: A minimum and maximum value within which any version available can

be used for executing the step.

Example: Inspec version 4 to 6 will execute the step on Inspec 4/5/6, whichever is

available on the node.

•	 Wildcard: This is denoted by the character *. Any version of the skill matching the

wildcard will be used for executing the step.

Example: Inspec 4.x will execute the step on any version of 4 available on the node.

•	 Payload: The content/command to be executed by the skill.

Examples: List of commands to be run by OS command skill, the cookbook to be run by

Infra client.

•	 Precondition: Criteria that the node must meet for every action before execution

of the step. Action will retry the number of times mentioned in retries until it meets

preconditions before marking it as failed action. There can be multiple preconditions

per action.

•	 Limit: Outer confines that an action cannot exceed. The action will stop execution of

the step when the limit is crossed. There can be multiple limits per action.

Example: Do not run the step in more than one core.

© 2024 Progress. All Rights Reserved. 10

•	 States: An action can be of multiple states depending on how the step executed:

•	 Completed action: An action is deemed completed after the step finishes execution.

•	 Successful action: An action is labeled as successful if it created the intended

outcomes.

•	 Failed action: An action is labeled as failed if it faced an error upon execution/

timed out/did not meet a success criterion.

•	 Success criteria: Every action can have a custom definition of how to check for

its success. The default success criteria for actions dictate that there are no errors

in its output when the step is executed.

Examples:

1.	 A file operation to create a certain folder structure is called a successful

operation if the desired file folders are created.

2.	A compliance scan can be considered successful only if 95% of inspec profile

controls succeed.

3.	An API call should contain text that matches a regex expression.

•	 Optional actions: Actions that will be only tracked for completion and not for

success/failure.

Example: Reindexing the database is optional before exporting into a

dump in the next action.

•	 Inputs: Any specific values that need to be provided by the step during run time for

proceeding with the execution.

Examples: Yes/No for file remove steps, cookbook location for client run, local mode options.

•	 Actions chaining: Every job can have multiple actions. These actions are executed

sequentially by default. However, the sequencing can be conditional. Each action can

have a condition on the states to check for against the previous action.

Example: Perform a remediation action only if the previous compliance scan action

failed. Execute an anti-virus scan action after completion of previous action.

•	 Retries: Every action can be re-attempted to completion if they have failed. By

default, no action is retried if failed.

Example: Action to stop a background process can have retries as 5 since it might not

stop the first time.

•	 Job run states:

•	 Completed: A run is deemed completed after all the actions complete.

•	 Successful: A run is labeled as successful if all the actions succeed as per their

criteria.

•	 Failed runs: A run is labeled as failed if any of the actions failed to meet their

success criteria. A run is also deemed as failed if the node is unreachable.

Worldwide Headquarters

Progress Software Corporation
15 Wayside Rd, Suite 400, Burlington, MA 01803, USA
Tel: +1-800-477-6473

	 facebook.com/getchefdotcom
	 twitter.com/chef
	 youtube.com/getchef
	 linkedin.com/company/chef-software
	 learn.chef.io
	 github.com/chef
	 twitch.tv/chefsoftware

About Progress

Progress (Nasdaq: PRGS) empowers organizations to achieve transformational success

in the face of disruptive change. Our software enables our customers to develop, deploy

and manage responsible AI-powered applications and experiences with agility and

ease. Customers get a trusted provider in Progress, with the products, expertise and

vision they need to succeed. Over 4 million developers and technologists at hundreds of

thousands of enterprises depend on Progress. Learn more at www.progress.com

© 2024 Progress Software Corporation and/or its subsidiaries or affiliates.
All rights reserved. Rev 2024/07 | RITM0250622

READ MORE

http://facebook.com/getchefdotcom
http://twitter.com/chef
http://youtube.com/getchef

http://linkedin.com/company/chef-software
http://learn.chef.io
http://github.com/chef
http://twitch.tv/chefsoftware
twitter.com/chef
http://youtube.com/getchef

http://youtube.com/getchef

https://www.linkedin.com/company/progress-software/mycompany/
https://www.progress.com/
https://community.chef.io/tools/chef-courier
https://www.chef.io/products/job-orchestration

